PodcastsSciencesGéométrie spectrale - Nalini Anantharaman

Géométrie spectrale - Nalini Anantharaman

Collège de France
Géométrie spectrale - Nalini Anantharaman
Dernier épisode

60 épisodes

  • Géométrie spectrale - Nalini Anantharaman

    06 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : fin de la preuve de Friedman, introduction à la méthode polynomiale. Travaux de Haagerup–Thorbjørnsen pour les matrices gaussiennes

    17/12/2025 | 1 h 33 min

    Nalini AnantharamanChaire Chaire Géométrie spectraleCollège de FranceAnnée 2025-202606 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : fin de la preuve de Friedman, introduction à la méthode polynomiale. Travaux de Haagerup–Thorbjørnsen pour les matrices gaussiennes

  • Géométrie spectrale - Nalini Anantharaman

    05 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : preuve de Friedman de la conjecture d'Alon II

    03/12/2025 | 1 h 36 min

    Nalini AnantharamanChaire Chaire Géométrie spectraleCollège de FranceAnnée 2025-202605 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : preuve de Friedman de la conjecture d'Alon II

  • Géométrie spectrale - Nalini Anantharaman

    04 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : preuve de Friedman de la conjecture d'Alon

    26/11/2025 | 1 h 31 min

    Nalini AnantharamanChaire Géométrie spectraleCollège de FranceAnnée 2025-202604 - Convergences de spectres et notes fondamentales : Convergence spectrale forte : preuve de Friedman de la conjecture d'AlonRésuméAprès avoir terminé d'énoncer les conséquences de la convergence au sens de Benjamini et Schramm pour des suites d'espaces métriques mesurés, nous nous tournons vers la notion de convergence spectrale forte. Les prochaines séances seront consacrées au cas des modèles de graphes réguliers aléatoires et à la démonstration par Joel Friedman de la convergence spectrale forte presque sûre.

  • Géométrie spectrale - Nalini Anantharaman

    03 - Convergences de spectres et notes fondamentales : Convergence au sens de Benjamini et Schramm

    19/11/2025 | 1 h 29 min

    Nalini AnantharamanChaire Géométrie spectraleCollège de FranceAnnée 2025-202603 - Convergences de spectres et notes fondamentales : Convergence au sens de Benjamini et Schramm

  • Géométrie spectrale - Nalini Anantharaman

    02 - Convergences de spectres et notes fondamentales : Notions de convergences géométriques et spectrales II

    12/11/2025 | 1 h 33 min

    Nalini AnantharamanChaire Géométrie spectraleAnnée 2025-2026Collège de France02 - Convergences de spectres et notes fondamentales : Notions de convergences géométriques et spectrales II

Plus de podcasts Sciences

À propos de Géométrie spectrale - Nalini Anantharaman

La géométrie spectrale est le domaine des mathématiques qui vise à faire le lien entre la géométrie d'un objet et son spectre de vibration. Le domaine a connu une première naissance dans les années 1910, quand les précurseurs de la mécanique quantique ont cherché à calculer le spectre des atomes à partir de considérations géométriques sur le modèle planétaire. La question s'est ensuite muée en l'étude du spectre d'opérateurs de Schrödinger, en lien avec la géométrie symplectique dans l'espace des phases de la mécanique classique.La seconde naissance du domaine remonte aux années 1960 avec le théorème de l'indice, qui donne des relations entre certains « indices topologiques » (par exemple la caractéristique d'Euler d'un espace topologique) et le bas du spectre d'un opérateur elliptique (comme l'opérateur de Laplace). Ce domaine connaît actuellement une activité intense du côté de la physique, avec la découverte du rôle de la notion d'« indice » dans la description des matériaux topologiques.Parmi les grandes questions de la géométrie spectrale, citons :Le chaos quantique : c'est l'étude du spectre d'un opérateur de Schrödinger, quand le système hamiltonien qui lui correspond en mécanique classique est chaotique ;Les problèmes inverses : que peut-on deviner de la géométrie d'un objet à partir de la mesure de son spectre de vibration ?Le lien entre spectre et topologie, via divers avatars du théorème de l'indice ;Le spectre de systèmes désordonnés ou d'objets géométriques aléatoires ;Le lien entre géométrie et contrôle des ondes : quels sont les meilleurs endroits où se placer pour « diriger » une onde ?Le cours sera tourné vers les aspects mathématiques de ces questions, mais certaines années le séminaire sera l'occasion d'entendre des physiciens présenter leurs travaux en lien avec le cours.
Site web du podcast

Écoutez Géométrie spectrale - Nalini Anantharaman, Les Aventuriers de la pensée (sciences sociales : sociologie, anthropologie, psychologie sociale) ou d'autres podcasts du monde entier - avec l'app de radio.fr

Obtenez l’app radio.fr
 gratuite

  • Ajout de radios et podcasts en favoris
  • Diffusion via Wi-Fi ou Bluetooth
  • Carplay & Android Auto compatibles
  • Et encore plus de fonctionnalités

Géométrie spectrale - Nalini Anantharaman: Podcasts du groupe

Applications
Réseaux sociaux
v8.2.1 | © 2007-2025 radio.de GmbH
Generated: 12/28/2025 - 9:51:50 PM