SummaryIn this episode Andrew Filev, CEO and founder of ZenCoder, takes a deep dive into the system design, workflows, and organizational changes behind building agentic coding systems. He traces the evolution from autocomplete to truly agentic models, discusses why context engineering and verification are the real unlocks for reliability, and outlines a pragmatic path from “vibe coding” to AI‑first engineering. Andrew shares ZenCoder’s internal playbook: PRD and tech spec co‑creation with AI, human‑in‑the‑loop gates, test‑driven development, and emerging BDD-style acceptance testing. He explores multi-repo context, cross-service reasoning, and how AI reshapes team communication, ownership, and architecture decisions. He also covers cost strategies, when to choose agents vs. manual edits, and why self‑verification and collaborative agent UX will define the next wave. Andrew offers candid lessons from building ZenCoder—why speed of iteration beats optimizing for weak models, how ignoring the emotional impact of vibe coding slowed brand momentum, and where agentic tools fit across greenfield and legacy systems. He closes with predictions for the next year: self‑verification, parallelized agent workflows, background execution in CI, and collaborative spec‑driven development moving code review upstream.AnnouncementsHello and welcome to the AI Engineering Podcast, your guide to the fast-moving world of building scalable and maintainable AI systemsWhen ML teams try to run complex workflows through traditional orchestration tools, they hit walls. Cash App discovered this with their fraud detection models - they needed flexible compute, isolated environments, and seamless data exchange between workflows, but their existing tools couldn't deliver. That's why Cash App rely on Prefect. Now their ML workflows run on whatever infrastructure each model needs across Google Cloud, AWS, and Databricks. Custom packages stay isolated. Model outputs flow seamlessly between workflows. Companies like Whoop and 1Password also trust Prefect for their critical workflows. But Prefect didn't stop there. They just launched FastMCP - production-ready infrastructure for AI tools. You get Prefect's orchestration plus instant OAuth, serverless scaling, and blazing-fast Python execution. Deploy your AI tools once, connect to Claude, Cursor, or any MCP client. No more building auth flows or managing servers. Prefect orchestrates your ML pipeline. FastMCP handles your AI tool infrastructure. See what Prefect and Fast MCP can do for your AI workflows at aiengineeringpodcast.com/prefect today.Your host is Tobias Macey and today I'm interviewing Andrew Filev about the system design and integration strategies behind building coding agents at ZencoderInterviewIntroductionHow did you get involved in ML/AI?There have been several iterations of applications for generative AI models in the context of software engineering. How would you characterize the different approaches or categories?Over the course of this summer (2025) the term "vibe coding" gained prominence with the idea that the human just needs to be worried about whether the software does what you ask, not how it is written. How does that sentiment compare to your philosophies on the role of agentic AI in the lifecycle of software?This points at a broader challenge for software engineers in the AI era; how much control can and should we cede to the LLMs, and over what elements of the software process?This also brings up useful questions around the experience of the engineer collaborating with the agent. What are the different interaction patterns that individuals and teams should be thinking of in their use of AI engineering tools?Should the agent be proactive? reactive? what are the triggers for an action to be taken and to what extent?What differentiates a coding agent from an agentic editor?The key challenge in any agent system is context engineering. Software is inherently structured and provides strong feedback loops. But it can also be very messy or difficult to encapsulate in a single context window. What are some of the data structures/indexing strategies/retrieval methods that are most useful when providing guidance to an agent?Software projects are rarely fully self-contained, and often need to cross repository boundaries, as well as manage dependencies. What are some of the more challenging aspects of identifying and accounting for those sometimes implicit relationships?What are some of the strategies that are most effective for yielding productive results from an agent in terms of prompting and scoping of the problem?What are some of the heuristics that you use to determine whether and how to employ an agent for a given task vs. doing it manually?How can the agents assist in the decomposition and planning of complex projects?What are some of the ways that single-player interaction strategies can be turned into team/multi-player strategies?What are some of the ways that teams can create and curate productive patterns to accelerate everyone equally?What are the most interesting, innovative, or unexpected ways that you have seen coding agents used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on coding agents at Zencoder?When is/are Zencoder/coding agents the wrong choice?What do you have planned for the future of Zencoder/agentic software engineering?Contact InfoLinkedInParting QuestionFrom your perspective, what are the biggest gaps in tooling, technology, or training for AI systems today?Closing AnnouncementsThank you for listening! Don't forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email
[email protected] with your story.To help other people find the show please leave a review on iTunes and tell your friends and co-workers.LinksZencoderWrikeDARPA Robotics ChallengeCognitive ComputingAndrew NgSebastian ThrunGithub CopilotRAG == Retrieval Augmented GenerationRe-rankingClaude Sonnet 3.5SWE-BenchVibe CodingAI First EngineeringWaterfall Software EngineeringAgile Software EngineeringPRD == Project Requirements DocumentBDD == Behavior-Driven DevelopmentVSCodeThe intro and outro music is from Hitman's Lovesong feat. Paola Graziano by The Freak Fandango Orchestra/CC BY-SA 3.0